Classification of module categories for SO(3)2

نویسندگان

چکیده

The main goal of this paper is to classify ?-module categories for the SO(3)2m modular tensor category. This done by classifying nimrep graphs and cell systems, in process we also SO(3) invariants. There are module type A, E their conjugates, but there no orbifold (or D) categories. We present a construction subfactor with principal graph given fusion rules fundamental generator introduce Frobenius algebra A which an generalisation (higher) preprojective algebras, derive finite resolution as left A-module along its Hilbert series.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of Split Ttf-triples in Module Categories

In our work [9], we complete Jans’ classification of TTF-triples [8] by giving a precise description of those two-sided ideals of a ring associated to one-sided split TTF-triples in the corresponding module category.

متن کامل

Tilting in module categories

Let M be a module over an associative ring R and σ[M ] the category of M -subgenerated modules. Generalizing the notion of a projective generator in σ[M ], a module P ∈ σ[M ] is called tilting in σ[M ] if (i) P is projective in the category of P -generated modules, (ii) every P -generated module is P presented, and (iii) σ[P ] = σ[M ]. We call P self-tilting if it is tilting in σ[P ]. Examples ...

متن کامل

Fuzzy projective modules and tensor products in fuzzy module categories

Let $R$ be a commutative ring. We write $mbox{Hom}(mu_A, nu_B)$ for the set of all fuzzy $R$-morphisms from $mu_A$ to $nu_B$, where $mu_A$ and $nu_B$ are two fuzzy $R$-modules. We make$mbox{Hom}(mu_A, nu_B)$ into fuzzy $R$-module by redefining a function $alpha:mbox{Hom}(mu_A, nu_B)longrightarrow [0,1]$. We study the properties of the functor $mbox{Hom}(mu_A,-):FRmbox{-Mod}rightarrow FRmbox{-Mo...

متن کامل

Recollements of (derived) module categories

Recollements of abelian, resp. triangulated, categories are exact sequences of abelian, resp. triangulated, categories where the inclusion functor as well as the quotient functor have left and right adjoints. They appear quite naturally in various settings and are omnipresent in representation theory. Recollements which all categories involved are module categories (abelian case) or derived cat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2021

ISSN: ['1857-8365', '1857-8438']

DOI: https://doi.org/10.1016/j.aim.2021.107713